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Start lecture 1

Admin
e Lecturer: Jan, TA: Pierre.
* Lectures are Monday and Friday 8-10am (= 8.15-9.55 with a 10 minute break)

* Exercise sessions Tuesday 3-5pm and Friday 10-12am. In weeks with public holidays there
will be lectures in the exercise slots. (See absalon.)

¢ Problem sheets will be uploaded on Thursday or Friday and have to be submitted on absalon
by Sunday the following week.

¢ The exercises are discussed in the exercise sessions and don’t need to be submitted, but it’s a
good idea to look at them before the session.

* The grade will be 50% exam and 50% the average homework grade (disregarding the lowest
homework submission).

1 Homotopy theory

1.1 Homotopy groups

Motivation. The idea of algebraic topology is to study “homotopical questions” using algebraic
methods. We could ask for example:

Question 1.1.1. How many (continuous) maps CP*> — CP? are there up to homotopy?

More generally we can ask:

Question 1.1.2. Given two “reasonable” topological spaces X and Y, what is the set
[X,Y] = {continuous maps f: X = Y}/~

where we say f ~ g if the maps are homotopic, i.e. there is a continuous map H: X x [0,1] — Y with
H(—,O) = fﬂndH(—, 1) =8

Often it’s easier to work with pointed spaces, i.e. tuples (X, xg) of a space X and a preferred
base-point xg € X. In that case we write

[(X,x0), (Y, y0)] := {continuous maps f: X =Y, f(xo) = yo}/~

where now a homotopy H has to respect the base-point in the sense that H(xo, ) = yo for all z.
The case of the circle (X, xo) = (S, so) will already be familiar to you: it’s the fundamental group.

m1 (Yo, v0) = [(S%, 50), (¥, ¥0)].



The definition of homotopy groups. At the heart of algebraic topology lies the following higher
dimensional generalisation of the fundamental group.

Definition 1.1.3. For n > 0, the nth homotopy group of a pointed space (X, xp) is
7Tn(sz0) = [(Sn’ SO)’ (X’XO)]

Example 1.1.4. We know that idg: S — S? is not homotopic to the constant map because it
induces a non-zero map on second homology. Therefore the second homotopy group m2(S2, s9) =
[(S2, 50), (S%,50)] has at least two elements: [idg2] and [consts,]. (Note: this argument can be
formalised using the “Hurewicz homomorphism” 4 (X, xg) — Hy(X ,X0)-)

For k > 1 we can define a group structure on 7 (X, x9) using the pinch map §* — §" v §", by
defining
n n n fvg
[f]-[g] =[S" — §"vS" — X]
Lemma 1.1.5. 7,,(X,x¢) is a group for all n > 1 and it is abelian for n > 2.

To prove the lemma, its more convenient to use the following alternative perspective on homotopy
groups. Let 7 = [0, 1] be the unit interval, /" the unit cube, 41" its boundary (when thought of as a
subset of R"). Then we have

(X, x0) = [(1°,01%), (X, x0)].

To see this note that 7¥/d1* is homeomorphic to S¥. In the future we will switch freely between
these two perspectives.

Example 1.1.6. The values of 74 (S") for k,n < 10. (See Hatcher.) While these groups are in general
quite difficult to determine, there are some patterns we can observe.

Remark 1.1.7. Homotopy groups are, in general, harder to compute than homology. For example,
thereisno closed, simply-connected, non-contractible manifold M, for which we know all homotopy
groups mi (M, mg). However, they are also “stronger” than homology groups. For example, we
will show Whitehead’s theorem, which says that a map f: X — Y between CW complexes is a
homotopy equivalence if and only if it is an isomorphism on all homotopy groups.

*Functoriality and the homotopy category. Given a map of pointed spaces ¢: (X,x0) — (Y, yo)
we get an induced map:

P2 ﬂk(X’-xO) —>7Tk(Y,y())
[f: (8%, 50) = (X,x0)] ¥ [@o f: (S5, 50) = (X,x0) = (¥, y0)]

This map is a group homomorphism, and homotopic maps ¢ ~ ¢ induce the same group
homomorphism ¢. = ¢.. We can encode this by saying 7x (—) defines a functor.

Definition 1.1.8. The pointed homotopy category Holop, has as objects pointed topological spaces
(X, x0). Morphisms are homotopy classes of pointed maps:

HomHOTop((X»x0)7 (Y’ )’O)) = [(X,_XO), (Y7 )’0)]



This allows us to formulate the functoriality of the homotopy groups. For each k > 0 we have a
functor
mx(—): Holop, — Set,

that takes a pointed space (X, xg) to the pointed set 74 (X, x9) and a homotopy class of pointed maps
[¢] to the map ¢.. (Note: this is the functor “corepresented” by (S”, sg) € HoIop.) When k > 1 this
functor can be promoted to a functor to the category of groups

nx(=): Holop, — Grp

and when k > 2 it lands in abelian groups.
As a consequence of functoriality we get:

Corollary 1.1.9. If ¢: (X,x0) — (Y,yo) is a pointed homotopy equivalence, then ¢.: mi(X,xp) —
7, (Y, yo) is an isomorphism for all k > 0.

This in particular means that if X is contractible, then 4 (X, xo) = mx (pt, pt) = *.

First computations. We can now compute some homotopy groups.

Lemma 1.1.10. If p: X — Y is a covering, then p.: np(X,x0) — 7 (Y, p(y)) is an isomorphism for all
k>2.

Example 1.1.11. Here are some coverings we can apply this lemma to:
1. R — S!is a universal covering, so (S, s9) = 0 for k > 1.
2. S' v S! has a contractible universal cover and so does every surface X, with g > 2.
3. S! x $? has as a universal cover R x 2.

Generalising point 3 above, we have:

Lemma 1.1.12. For a (possibly infinite) family of based spaces (X, x(()“))dE J we have

1_[ Xa»Xo

acl

Tk

= l—l nk(Xa,x(()a))

aecl

1.2 Relative homotopy groups

The definition. When working with homology groups, there is “relative” notion, where we assign
a group Hy (X, A) to a pair of spaces A C X. This is useful, as it allows us to talk about excision etc.
In analogy with this we now introduce the relative homotopy groups of a pointed pair of spaces
xo € A c X. For k > 1 we define:

T (X, A, xo) = [(D", 8", 50), (X, A, x0)]

In other words, this set consists of maps f: D" — X satisfying f (8" 1) c A and f(sg) = xo, up to
homotopies that preserve these conditions.

Note that we can recover the usual homotopy groups of (X, x¢) by letting A = {x¢}:

7 (X, {x0}, x0) = mx (X, x0).



Example 1.2.1. Draw 71(Z4, D? 11 D?,xg), and mp. We see that 7 (X, A, xo) captures loops in A that
are null homotopic in X. This will be useful later in the long exact sequence of a pair.

The relative homology groups satisfied Hi(X,A) = Hi(X/A) for CW-pairs (X,A). For relative
homotopy groups this doesn’t hold in general, but there is a map

7 (X, A) — 1 (X/A)

and we will later prove a (hard) theorem that allows us deduce that this is an isomorphism “for
small enough k”.

We haven't talked about group structures on relative homotopy-“groups” yet. To do so, we need
the following notation:

n" = (81" \ (I"-1 x {0}) c I".
Using this we can rewrite the relative homotopy group as
(X, A, xg) = [(I",0I",1"), (X, A, xp)]
Lemma 1.2.2. 7 (X, A, xo) is a group for k > 2 and it is abelian for k > 3.
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The compression criterion. The following allows us to more easily detect whether an element of
the relative homotopy group is trivial.

Lemma 1.2.3. Anmap f: (D", 5", 50) — (X, A, x0) represents the O-element in m,(X, A, xo) if and only
if f is homotopic, relative to S"~1, to a map with image in A.

We can also express this in terms of an exact sequence:

Corollary 1.2.4. For any pointed pair (X, A, xo) and k > 0 the following sequence is exact:
m(A,x0) = 7 (X, x0) < 7k(X, A, x0)

Here the first map is induced by i: (A,x9) — (X, xo) and the second map by j: (X, {x0},x0) — (X, A, xp).

The long exact sequence of a pair. [The LES was stated in lecture 1] We can in fact extend the
short exact sequence from Corollary 1.2.4 to a long exact sequence. For this we use the boundary
homomorphism

0. (X, A, x0) — mi-1(A, x0)
[f: (D, 5571 50) = (X, A,x0)] — [figeer: (5571, 50) = (4,x0)]
This makes sense for all k£ > 1 and it is a group homomorphism for k > 2.
Proposition 1.2.5. For any pointed CW-pair (X, A, xo) and k > 0 the following is a long exact sequence

a. 2 . o, 2 .
5 (AL x0) — M (X, x0) o i (X, A xg) — T_1 (AL x0) — 1 (X, x0) — ...

. a. .
5 (X, A, x0) — m0(A, x0) — m0(X, X0)

Here the first map is induced by i: (A, xo) — (X, xo) and the second map by j: (X, {xo},x0) — (X, A, x0).



Remark 1.2.6. It would make sense to define 7o(X, A, x9) = mo(X)/mo(A).
Example 1.2.7. For a space X define the cone on X to be
CX =(XxD/(Xx{0}).

We identify X x {1} ¢ CX with X. The cone as the useful property of being contractible while at
the same time containing X. Using the long exact sequence of the pair (CX, X) we see

m(CX, X, x0) = mp_1(X, x0)

for k > 1. So in particular the second relative homotopy group 7> (CX, X, xo) can be non-abelian.

*The action of the fundamental group. [This subsection was discussed in the exercise session.]

Suppose a space X as two base points xo and x;. If they lie in the same path component, then we
can relate the homotopy groups at two base points as follows. Take a path y: [0,1] — X with
7(0) =xg and y(1) = x;. (Abbreviated y: xg ~ x1.) We define a map

v (=) (X, x0) = 7p(X,x1)

by y.[f: D" — X] = [f’] where we define f’ ona € D" as:

;oo fQa) for |al <
f(a)_{y(2|a|—1) for |a >

[SIE ST

This is an isomorphism of groups.

When x¢ = x1, this gives an automorphism of 74 (X, x9). So for every loop [y] € 71(X, x9) we obtain
an automorphism of 7x (X, xg). Homotopic loops induce the same map and in fact this assembles
to a group homomorphism

m1(X, xg) — Aut(m,(X,x0))
[yl = ([f]1 = [y.fD

We say that the group 71 (X, xp) acts on m (X, xg), or that 7 (X, xo) is a 71 (X, xg)-module.
In the relative case we similarly we obtain a group action

m1(A, x0) — Aut(m, (X, A, x0))
Definition 1.2.8. We say that a space X is abelian if all of the 7;-actions are trivial. Concretely, we
require that for all xg € X, [y] € m1(X,x0), [f] € mx (X, x0) we have y.[f] = [f].
1.3 “Recollection” on CW complexes

['m not assuming that you are familiar with the contents of this section, so it’s not really
a “recollection”. This section was lectured in parallel with the following one on cells and
connectivity.]



Defining CW-pairs. In much of this course we will focus only on “sufficiently nice” topological
spaces. Usually this will mean that we assume the spaces to be CW complexes, or at least homotopy
equivalent to CW complexes. The key idea of CW complexes is that they are built from cell
attachments.

Definition 1.3.1. Let X be a topological space and ¢: $"~! — X a map. Then the n-cell attachment
along ¢ is defined as
XUge" =(XUD")/~

where ~ is the equivalence relation that identifies p € $"~! ¢ D" with ¢(p) € X.

Given a (possibly infinite) family of maps (¢, : §"1 — X)q4es, the simultaneous n-cell attachment
along the ¢, is defined as
X Ug{egtaes = (XU (I xD"))/~

where ~ is the equivalence relation that identifies (p, @) ~ po(p) forall p € s"land a € J.

An important lemma about cell attachments is the following: [This was not mentioned in the
lecture.]

Lemma 1.3.2. If o1, ¢2: S¥=1 — X are homotopic, then X Uy, e* and X U, e* are homotopy equivalent.

Now a CW complex is a space is a space obtained by simultanously attaching n-cells of successively
larger dimension. We introduce the relative notion of a CW pair, the definition of a CW complex
can be recovered by setting A = 0.

Definition 1.3.3. A CW pair is a pair of topological spaces (X, A) together with a filtration (i.e. a
sequence of subspaces) A = X(*1) ¢ X ¢ x) ¢ x@ c ... such that:

1. Foralln > 0, X" is obtained from X"~1 by a simultaneous attachment of n-cells.

2. X is the union of the X", and U c X is open if and only if U n X is open for all .
We say that (X, A) is (at most) n-dimensional if X" = X.

Remark 1.3.4. Note that the second part of condition 2 means that a map f: X — Y is continuous
if and only if its restriction fixm: X (") Y is continuous for all n. This is usually called the weak
topology. Therefore, the entire condition 2 may be reformulated as saying that X is the colimit of the
diagram X(7): (N, <) — Top in the category of topological spaces.

The definition of the weak topology implies that any compact subset of a CW pair (X, A) can only
intersect the interior of finitely many cells in X \ A. In particular any map D" — X factors through
a finite subcomplex of X.

The homotopy extension property. We say that a pair of topological spaces (X,A) has the
homotopy extension property (HEP) if for every map out of X a homotopy on A can be extended
to a homotopy on X. Concretely this means:

Definition 1.3.5. A pair (X, A) has the HEP if for every space Y, every map f: X — Y and every
homotopy i: A x [0,1] — Y with hax0) = fia there is a homotopy H: X x [0,1] — Y extending &
and f, i.e. satisfying H|ax[0,1] = h and H|xx{0} = f-
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In diagrams this means that any of the following solid arrow commutative diagrams, needs to
admit a dashed arrow that makes the diagram commute:

AXx{0} —— X x{0}

! !

Ax[0,1] — X x[0,1]

~

Inspecting this diagram in the “universal case” (namely, when ¥ = A x [0, 1] Uax(0} X X {0}), one
can show:

Lemma 1.3.6. A pair (X, A) has the HEP if and only if the inclusion
A Xx[0,1] Uax oy X X {0} — X x [0,1]
admits a retraction.

One of the great things about CW pairs is that they have the HEP. This is not terribly difficult to
show, but we won’t discuss it in the course.

Lemma 1.3.7. If (X, A) is a CW pair, then it has the HEP.

The compression lemma. We now prove a lemma that will explain why CW pairs and relative
homotopy groups play so well together. In principle the reason is that CW pairs are built by gluing
cells and relative homotopy groups measure how many maps from a cell a pair receives. This
“lemma” is crucial to many of the proofs that follow, so it gets to be a proposition.

Proposition 1.3.8 (Compression lemma). Let (X, A) bea CW pair and (Y, B) a pair of topological spaces.
Suppose that

® For each n € N such that X \ A has at least one n-cell, the relative homotopy group r, (Y, B) is trivial.
Then every map of pairs f: (X, A) — (Y, B) is homotopic, relative to A, to a map with image in B.

This is proved by inductively constructing maps f,: (X,A) — (¥, B) and homotopies h,: X X
[0,1] — Y with f_1 = f and

* fu(X")cB
® hp: fu_1 ~ fu is a homotopy relative to x (-1,

These then assemble to a map X x [-1, ) — ¥, which can be uniquely extended to a homotopy
X x [-1, 0] — Y whose value at -1 is f and whose value at o has image in B.

11



Whitehead’s theorem for subcomplexes. As an application of the compression lemma we obtain
an important special case of Whitehead’s theorem.

Theorem 1.3.9 (Whitehead theorem for subcomplexes). Let (X,A) a CW pair and assume that
ni(X, A, x0) =0 forall k > 0 and xo € X. Then the inclusion A — X admits a deformation retraction.

Example 1.3.10 ([Problem sheet?]). Note that Whitehead’s theorem does not hold for arbitrary
pairs of spaces. The “topologists circle” T c IR? satisfies that each map S" — T factors through a
subspace homeomorphic to 7 and hence is homotopic to a constant map. Therefore, if we choose
a good basepoint, then 7. (7, tp) = 0 for all k > 0. If Whitehead’s theorem were true, then T would
be contractible. But 7 is not contractible, in fact there is a map 7 — S! that is not homotopic to a
constant map.

1.4 Cells and connectivity

Trivial homotopy groups via transversality. We now fill in “half” of the diagram of 4 (S") that
we saw in the first lecture.

Lemma 1.4.1. 74 (S",50) =0 forall k < n.

This proof required us to know that every continuous map S¥ — §" is homotopic to a smooth one.
In fact, the following stronger version of smooth approximation holds:

Theorem 1.4.2. Let f: DX — S" be a continuous map. Fix two disjoint open subsets U,V ¢ D* and
& > 0. Then there is g: D* — S" satisfying

* |f(x) —g(x)| <& forall x € D

* flu=gu

* g|v is smooth (alternative: gy is piecewise linear)
Note that for & < 2 the two maps are homotopic relative to U via affine interpolation.

Above we showed that the n-sphere S has trivial homotopy groups below dimension n. We can
expect the same to work for a CW-complex that is only built from a single 0-cell and cells of
dimension > n. In general, the idea seems to be that for k < n a k-cell can’t map non-trivially to an
n-cell. Concretely, we have the following:

Proposition 1.4.3. Let (X, A) be a CW-pair such that all cells of X \ A have dimension > n, then n,,(X, A) =
0.

The proof of this works by first noting that a map f: D" — X can only hit finitely many cells and
hence reducing to the case of the single cell, i.e. where X = A Ugm-1 D™ for some m > n. In this
case we first smooth f around the midpoint of D" while keeping it constant in a neighbourhood
of f71(A).

Example 1.4.4. As a consequence of this proposition we can see, for example, that

7k (8" V8™ = 1 (S") for k <m - 2.

12



Using the standard cell structure on complex projective space we also see that
7k (CP") = 75 (CP™) for k < 2n.
In particular 72 ($?) = 72(CPY) = 71,(CP") and and 713(S2) — n3(CP") is an epimorphism. (We will

later see that for n > 2 this map is Z — 0.)

*Cellular approximation. [We skipped this section in the lecture, but we will state the theorem
in the next lecture.] The first important consequence of the compression lemma (and of the
connectivity computation of Proposition 1.4.3) is that we can homotop every map of CW complexes
to one that respects the cell structure.

Definition 1.4.5. We say thata map f: X — Y is cellular if for all #n > 0 it sends the n-skeleton of X
to the n-skeleton of Y: f(X) c Y™,

Theorem 1.4.6 (Cellular approximation). Let f: (X,A) — (Y, B) be a map of pairs of CW complexes,
and A C X a (possibly empty) subcomplex such that fia: A — Y is cellular. Then f is homotopic relative to
A to a cellular map.

The proof of this theorem is almost identitcal to that of the compression lemma, except that we use
the fact 7, (Y, Y ™) = 0 from Proposition 1.4.3 to compress X" — ¥ into ¥ ).

Example 1.4.7. If we apply thisto ¢: (D, S¥°1) — (¥,¥™) we directly recover the fact that (¥, ¥ ")
is n-connected.

1.5 Connectivity and Whitehead’s theorem

Connectivity. We saw above that the n-sphere only has trivial homotopy groups below degree n.
We now introduce some terminology to capture this.

Definition 1.5.1. Let0 < n < co. We say that a space X is n-connected if it is non-empty and satisfies
the following equivalent conditions:

1. Forall x € X and k < n the set 7 (X, x) is trivial.
2. Forall 0 < k < n every map S¥ — X is homotopic to a constant map.

3. Forall 0 < k < n every map S¥ — X extends to D".
If a space is co-connected we call it weakly contractible.

By convention we say that a space is —1-connected if it is non-empty and we say that every space
is —2-connected.

Start lecture 3

Definition 1.5.2. Letn > 0. We say thatamap ¢: X — Y isn-connected if ¢, : (X, x) — m (Y, ¢(x))
is a bijection for all k < n and a surjection for k = n. If a map is co-connected we call it a weak
equivalence.

13



Example 1.5.3. A map ¢: X — Y is 0-connected if it hits all path components of Y. It is 1-
connected, if it induces a bijection on path-components and all maps induced on fundamental
groups ¢: m1(X,x) — n1(Y,y) are surjective.

The map X — pt is n-connected if and only if X is (n — 1)-connected, and the inclusion of a point
pt — X is n-connected if and only if X is n-connected.

The choice of requiring surjectivity in dimension n might seem slightly odd, but it’s chosen such
that the following works out nicely.

Lemma 1.5.4. Let 0 < n < co. For a pair (X, A) the following are equivalent:

1. The inclusioni: A — X is n-connected.
2. Forallx e Aand 1 < k < ntheset mi (X, A, x) is trivial, and moreover no(A) — mo(X) is surjective.

3. Forall 0 < k < n every map of pairs (D*, S*=1) — (X, A) is homotopic relative to S~ to a map with
image in A.

We call such pairs n-connected.

Hence Proposition 1.4.3 says that if (X, A) isa CW pair such that all cells of (X, A) are of dimension
> n, then (X, A) is n-connected.

Whitehead’s theorem. Whitehead’s theorem tells us that homotopy groups detect homotopy
equivalences between CW complexes.

Theorem 1.5.5 (Whitehead). A map between CW complexes is a weak equivalence if and only if it is a
homotopy equivalence.

The following theorem tells us that up to weak equivalence every topological space may be replaced
by an essentially unique CW complex. Together with Whitehead’s theorem this means that
“studying topological spaces up to weak equivalence is equivalent to studying CW complexes
up to homotopy equivalence”:

Theorem 1.5.6 (CW approximation). For any topological space T there is a weak equivalence ¢: X — T
where X is a CW complex. We say that the tuple (X, ¢) is a CW-approximation of T. If (X, ¢) and (Y, )
are CW approximations of the same space T, then there is a homotopy equivalence f: X — Y such that y o f
is homotopic to ¢.

Xty
N
T

[ We will not prove this theorem now because we don’t need it (yet?). It will later follow from a
more general construction. |

We have already proved the Whitehead theorem in the special case of those maps A — X that are
inclusions such that (X, A) admits the structure of a CW pair. Now we reduce the general case to
this.

14



Maps are subspaces. To prove the Whitehead theorem for arbitrary maps we need to replace an
arbitrary continuous map between CW complexes by a subcomplex inclusion. This is only possible
if we enlarge the target space. To do so we will need the mapping cylinder

My, = (Xx[0,1]1Y)/~

where ~ identifies (x,1) ~ ¢(x). This mapping cylinder contains a copy of X = X x {0} ¢ M, as
well as a copy of Y. The inclusion of ¥ admits a deformation retraction, making M, homotopy
equivalent to Y. This means we can think of M, as a “homotopy replacement” of Y. If (X, A) is
a pair and i: A — X the inclusion, then (M;, A) — (X, A) is a homotopy equivalence of pairs. So
in this sense the mapping cylinder allows us to think of any map as an inclusion. We encode this
observation as follows:

Lemma 1.5.7. Any map of CW-complex ¢: X — Y can be factored as
p: X > M, N

where the first map is the inclusion of a subcomplex and the second map is a homotopy equivalence.

Remark 1.5.8. Note that a map ¢: X — Y is n-connected if and only if the pair (M, X) is n-
connected.

This allows us to deduce the general Whitehead theorem from the compression lemma ??.

*Relative homotopy groups of maps. [This isjusta curiosity.] Using the mapping cone we define
relative homotopy groups of a map that is not necessarily a subspace inclusion.

Definition 1.5.9. For a pointed map ¢: (X,x9) — (¥, yo) we define its relative homotopy groups as
m (X 5 ) = m(My, X, x0).

Note that this is an abuse of notation as the definition depends of ¢, which is not mentioned in the
notation. Using that 7 (M, y0) = m (Y, yo), the long exact sequence of a pair now gives us a “long
exact sequence of a map”:

a. \ 2 a. . 2
5 (X, x0) 25 mi (Y, yo) Lo (X 4 Y) s 1 (X, x0) 5 e 1 (X, x0) 2

We can now say that a map ¢ is n-connected if and only if 74 (X Ly ) is trivial for 0 < k < n.
1.6 The Hurewicz theorem

[ In this section I'm not following the usual references, but rather https://webusers.imj-prg.
fr/~julien.marche/M2/topolIl.pdf (in French) pages 3-6. |
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The Hurewicz homomorphism. We can define a map from the relative homotopy group to the
relative homology group:

(X, A, x9) — Hi (X, A)
[f: (DX, 851 50) > (X, A, x0)] — fi[D"]

This is defined by applying the map f induces on homology f..: Hx(DX, S¥=1) — Hy(X, A), to the
generator of Hy(D*, S¥71) = 7.

Lemma 1.6.1. The Hurewicz homomorphism is a group homomorphism, and it is invariant under the action
of the fundamental group in the sense that for [y] € m1(X,xo) and [ f] € nx (X, x0) we have

A(lyl-LfD = [f]-
Example 1.6.2. In the case of the n-sphere the Hurewicz homomorphism
h: ma (8", 50) — Hn(S", 50) = Z
is surjective. (We will see below that it is an isomorphism in this degree.)

Example 1.6.3. Using the Hurewicz homomorphism in conjunction with Lemma 1.1.10 we can
show that 2 (S! v §?) is not finitely generated.

The goal of today’s lecture is to prove the Hurewicz theorem, which allows us to compute the
lowest non-trivial homotopy group of a space using homology. As a motivation we state a special
case:

Theorem 1.6.4 (Absolute Hurewicz theorem). Let n > 2 and suppose (X, xo) is (n—1)-connected. Then
Hi (X, x0) =0 for k < n and the Hurewicz homomorphism in dimension n is an isomorphism

i (X, x0) — Hp(X).
Example 1.6.5. With this we can finally determine some non-trivial homotopy groups:
1. 7,(S") = Zforalln > 1.
2. mp(CP") = Z foralln > 1.
3. ma(Vier §") = P;c; Z and the lower homotopy groups are trivial.

To harness the full strength of the Hurewicz theorem we will prove a relative version that applies
to an n-connected pair (X, A). This brings an additional difficulty with it as A might not be simply
connected, which means that we have to watch out for the action of 71(A,xg). We define the
following modification of the relative homotopy group:

Definition 1.6.6. Let (X, A) be a pair such that A is path-connected. The modified homotopy group
of a pair 7} (X, A) is defined as the quotient

(X, A) = (X, A, x0) [{[f] = v.[f] : f € m(X, A, x0),y € m1(A, x0))

by the normal subgroup of 7x (X, A, x9) generated by the differences between elements and their
orbits under the 71 (A, xg)-action. The definition is independent of the choice of base-point x¢ € A.
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This modified homotopy group is defined such that the Hurewicz homomorphism factors as:
h: (X, A, x0) » 1 (X, A) — Hi (X, A).

Remark 1.6.7. [Warning: [ haven’t checked this, and I didn’t mention it in the lectures.] The group
m,. (X, A) is abelian (even if k = 2) and it can be described as the quotient

7 (X, A) = Z([(D*, S5, (X, A)])/~

of the free abelian group on the set of homotopy classes of (unbased) pairs (DX, S¥1) — (X, A),
by the subgroup generated by the relation [f Vv g] - [f] - [¢] for any two f, g: (DX, $¥71) — (X, A)
that satisfy f(so) = g(s0).

A more category theoretic description of the modified homotopy group is as follows. The group
n(X, A, -) is a functor from the fundamental groupoid of A to the category of groups. The
modified homotopy group 7 (X, A) is the colimit of this functor.

Modified homology groups. We now introduce an variant of the singular chain complex of a
pair (X, A), which is constructed such that it is trivial in degree n and below. We will then use the
compression criterion to show that it is equivalent to singular homology, if (X, A) is n-connected.

Definition 1.6.8. For a pair (X, A) and n > 0 we let
Ci™ (X, A) C Cu(X, A)
be the subcomplex of the singular chain complex that contains only those k-simplices
o AF X

that satisfy that the n-skeleton (A¥)("™) c A¥ is sent to A. We let H'™ (X, A) denote the homology of
this chain complex.

In a case of an n-connected pair this computes the usual homology:

Lemma 1.6.9. If (X, A) is n-connected, then the inclusion C,f") (X, A) — C.(X, A) is a quasi-isomorphism,
i.e. it induces isomorphisms H,(C”) (X,A) = Hi (X, A) forall k.

In particular we conclude that Hy (X, A) = 0 for k < n. By applying this to the pair (M, X) for a
map ¢: X — Y we conclude:

Corollary 1.6.10. If ¢: X — Y is n-connected, then ¢.: Hi(X) — H(Y) is an isomorphism for k < n. In
particular, a weak equivalence induces isomorphisms on all homology groups.

We're now ready to prove the Hurewicz theorem in its full generality:

Theorem 1.6.11 (Hurewicz). For n > 2, let (X, A) be an (n — 1)-connected pair and assume that A is
path-connected. Then Hy (X, A) = 0 for k < n and in dimension n the modified Hurewicz homomorphism

h:nl (X, A) — Hu(X, A)
is an isomorphism.

Fun fact: this proof did not use anything fancy. We could have done it in lecture 2.
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1.7 “Recollection” on cohomology

This lecture is a crash course on cohomology at the same time an introduction to Eilenberg-Mac
Lane spaces. The course syllabus seems to think that you know cohomology, but I'm aware that it
wasn’t covered in any courses that you could have taken. While we don’t have time to go through
these things in detail, I hope that this overview will set a good basis for when we actually want to
use these things later in the course.

One reason we might care about cohomology is that it appears in the formulation of Poincaré
duality:

Theorem 1.7.1 (Poincaré duality). Let M be a closed n-dimensional manifold and suppose that M is
oriented. Then there are isomorphisms

D: HY(M; 7)) = Hy_1(M; 7).

If we work with coefficients in a field &, then we can replace cohomology by the dual of homology:

Theorem 1.7.2. Let k be a field and M a closed n-dimensional manifold. If char(k) # 2, assume that M is
oriented. Then there are isomorphisms

D: Homy (Hp_i (M; k), k) = H*(M; k) — H"5(M; k).

However, we would like to understand Poincaré duality integrally, and we would also like to
understand how to actually construct the duality isomorphisms D. This requires us to talk more
about cohomology, and along the way we’ll see that cohomology is also a very useful tool in its
own right.

Cellular cohomology. [Apparently cellular homology wasn’t covered in AlgTopl. Apologies for
assuming familiarity with it here.] Recall the cellular chain complex of a CW-complex X. The
abelian group of cellular k-chains is the free abelian group on the set of cells

Cell(X) = Z(e* ¢ X cell)
and the boundary operator is defined using the attaching maps of the cells.

9: CEl(x) — 5 (X),
o+ do = Z +ek1

ek-1coo

Cellular homology of X is the homology of the chain complex
HEN(X) = H (C(X0);9)

We now can define cellular cohomology. As “coefficients” we take some abelian group G (think Z
or Q or Z/p).
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Definition 1.7.3. A G-valued cellular cochain on X is a map
a: {e*¥ c X cell} - G
from the set of cells of X to G. The cellular cochain complex of X with c